

¹Department of Physics, California State University, Los Angeles;² Material's Research Institute, and Department of Material Science, Pennsylvania State University

Lead-Free KNN Thin Films

Potassium Sodium Niobate K_{0.50}Na_{0.50}NbO₃ (KNN) films are studied for their competitive piezoelectric properties to potentially replace lead-based piezoelectric material used in devices. Chemical Solution Deposition (CSD) and RF Sputtering are two methods used in developing KKN films.

KNN has a high Curie temperature and a low dielectric permittivity making its properties more temperature-stable.

Experimental Procedures		
Chemical Solution Deposition (CSD):		
Cristalization description (CSD):		
		RE-Sputtering
KNN Film Thickness Substrate	<u>0000</u> 1.44µm Pt/Ti/SiO₂/Si	2μm Pt/Ti/SiO₂/Si
Area Top Electrode	0.2 mm	0.2827 mm

